Electronic Journal of Qualitative Theory of Differential Equations
2011, No. 93, 1-13; http://www.math.u-szeged.hu/ejqtde/

On the Growth of Solutions of Some Higher
Order Linear Differential Equations With
Entire Coeflicients

Habib HABIB and Benharrat BELAIDI

Department of Mathematics
Laboratory of Pure and Applied Mathematics
University of Mostaganem (UMAB)

B. P. 227 Mostaganem-(Algeria)
habibhabib2927@yahoo.fr
belaidi@univ-mosta.dz

Abstract. In this paper, we investigate the order and the hyper-order of
solutions of the linear differential equation

F® 4 (Dyoy + Byoae=22) fED 4 (Dy + Bie™?) f

+ (Do + A1e™* + Aze™®) f =0,

where A;(2) (#0) (j = 1,2), Bi(2) (#0) ({ = 1,...,k—=1), Dy, (m =
0,....,k — 1) are entire functions with max{o (4;),0(B;),0 (D)} < 1, ay,
as, by (I = 1,...,k — 1) are complex numbers. Under some conditions, we
prove that every solution f (z) #Z 0 of the above equation is of infinite order
and with hyper-order 1.
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1 Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fun-
damental results and the standard notations of the Nevanlinna’s value dis-
tribution theory (see [9], [14]). Let o (f) denote the order of growth of an
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entire function f and the hyper-order o5 (f) of f is defined by (see [10], [14])

loglog T log log log M
o2 () = lim sup BIBTUT) gy g logloglos M J)

=400 log r r—+o00 logr

)

where T (r, f) is the Nevanlinna characteristic function of f and M (r, f) =

maxyz|— | f (2)]
For the second order linear differential equation
f// + €7zfl _'_ B(z) f = 0’ (11)

where B (z) is an entire function, it is well-known that each solution f of
the equation (1.1) is an entire function, and that if f;, fy are two linearly
independent solutions of (1.1), then by [4], there is at least one of fi, fy of
infinite order. Hence, "most” solutions of (1.1) will have infinite order. But
the equation (1.1) with B(z) = —(1 4 e~*) possesses a solution f (z) = e* of
finite order.

A natural question arises: What conditions on B(z) will guarantee that
every solution f # 0 of (1.1) has infinite order? Many authors, Frei [5], Ozawa
[12], Amemiya-Ozawa [1] and Gundersen [6], Langley [11] have studied this
problem. They proved that when B(z) is a nonconstant polynomial or B(z)
is a transcendental entire function with order p(B) # 1, then every solution
f # 0 of (1.1) has infinite order. In [3], Chen has considered equation (1.1)
and obtained different results concerning the growth of its solutions when
p(B) =1.

Recently in [13], Peng and Chen have investigated the order and the
hyper-order of solutions of some second order linear differential equations
and have proved the following result.

Theorem A ([13]) Let A; (z) (#0) (j = 1,2) be entire functions with o (A;) <
1, a1, ag be complex numbers such that ajas # 0, a1 # ay (suppose that
la1| < lag|). If argay # m or a; < —1, then every solution f # 0 of the
equation

f// + G_Zf/ + (Alealz +A26a22) f =0

has infinite order and oy (f) = 1.
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In this paper, we continue the research in this type of problems, the main
purpose of this paper is to extend and improve the results of Theorem A
to some higher order linear differential equations. In fact we will prove the
following results.

Theorem 1.1 Let A; (2) (#0) (j =1,2), Bi(2) (#0) (I=1,...,k—1), D,
(m=0,...,k—1) be entire functions with max{o (A;),o (B;),0 (Dn)} <1,
by (I=1,...k—1) be complex constants such that (i) argb, = arga;, and
by =cqa (0<¢ <1)(l€l) and (ii) b, is a real constant such that by < 0
(l S IQ), where Il 7& g, _[2 7& J, Il N _[2 = J, Il U _[2 = {1,2,...,]{3—1},
and ay, ay are complex numbers such that ajas # 0, a1 # as (suppose that
|a1| < |as|). If argas # m or ay is a real number such that a; < &, where
c=max{¢:l €} and b =min{b, : | € I}, then every solution f # 0 of
the equation

F® 4 (Dyoy + Byoae=22) fED 4 (Dy + Bie™?) f’

+ (DQ + Alealz + A26a2z) f = 0 (12)
satisfies o (f) = +oo and o9 (f) = 1.

Corollary 1.1 Let A; (2) (#0) (j =1,2), Bi(2) (#¥0) (l=1,...k—1), D,
(m=0,...,k —1) be entire functions with max {o (A;),o (B;),0 (Dn)} <1,
by (I=1,....k—1) be complex constants such that argb, = arga; and b, =
aay (0<g<1l)(l=1,...,k—=1), and ay, ay be complex numbers such that
ajay # 0, a3 # ay (suppose that |ai| < |ag]). If arga; # m or ay is a real
number such that a; < 0, then every solution f % 0 of equation (1.2) satisfies
o(f) =400 and o2 (f) = 1.

Corollary 1.2 Let A; (2) (#0) (j =1,2), Bi(2) (#0) (I=1,...,k—1), D,
(m =0, ...,k — 1) be entire functions with max {o (A;),0(B;),0(Dy)} <1,
by (l=1,....k —1) be real constants such that by < 0, and ay, as be complex
numbers such that ajay # 0, a1 # as (suppose that |ai| < |ag|). If argay # 7
or ay is a real number such that a; < b, where b=min{b; : l =1,....k — 1},
then every solution f # 0 of equation (1.2) satisfies o(f) = +oo and
o2 (f) =1
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2 Preliminary lemmas

To prove our theorem, we need the following lemmas.

Lemma 2.1 ([7]) Let [ be a transcendental meromorphic function with
o(f)=0<+o0, H={(k1,j1), (k2,J2), ..., (kq, Jq)} be a finite set of distinct
pairs of integers satisfying k; > j; >0 (i =1, ...,q) and let € > 0 be a given
constant. Then,

(i) there exists a set By C [—%, 37“) with linear measure zero, such that, if

(NS [—g, 37”) \ E1, then there is a constant Ry = Ry () > 1, such that for

all z satisfying arg z = ¢ and |z| > Ry and for all (k,j) € H, we have

¥ ()

e
(ii) there exists a set Ey C (1,400) with finite logarithmic measure, such
that for all z satisfying |z| ¢ Eo U [0,1] and for all (k,j) € H, we have

’ 1 (z)
79 (2)

(iii) there exists a set E5 C (0,00) with finite linear measure, such that for
all z satisfying |z| ¢ E3 and for all (k,j) € H, we have

7 (2)
9 (2)

Lemma 2.2 ([3]) Suppose that P (z) = (a+i3) 2" + ... (o, B are real num-
bers, |a|+ 8] # 0) is a polynomial with degree n > 1, that A (z) (Z£0) is an
entire function with o (A) < n. Set g(z) = A(2)el®), 2 =re? §(P,0) =
acosnb — [Fsinnb. Then for any given € > 0, there is a set Ey C [0,27) that
has linear measure zero, such that for any 6 € [0,27)\ (Fy U Es), there is
R >0, such that for |z| =r > R, we have

(i) if 0 (P,0) >0, then

< ‘z|(kfj)(071+€) : (21>

< ‘z|(/~ﬂ—j)(<f—1+€) 7 (2_2)

< |Z|(k—j)(0+6) . (2.3)

exp{(1—¢)d(P,0)r"} <|g (rew)} <exp{(l+¢)o(P,0)r"}; (2.4)
(i) of 0 (P,0) <0, then
exp{(1+¢)6(P,0)r"} < |g(re”)| <exp{(1—¢)d(P,6)r"}, (2.5)
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where Es = {0 € [0,27) : § (P,0) = 0} is a finite set.

Lemma 2.3 ([13]) Suppose that n > 1 is a positive entire number. Let
P;(z) = ajp2" + ... (j =1,2) be nonconstant polynomials, where aj, (¢ =
1,...,n) are complex numbers and aj,as, # 0. Set z =re®, a;, = |a;,| e,
0, € [-2,%), 6(P;,0) = |ajn|cos(6; +nb), then there is a set FEg C
[ g 3”) that has linear measure zero. If 01 # 05, then there exists a ray

T 2n02n
argz =0, 0 € (—%, &) \ (Eg U E7), such that
0 (P1,0)>0,6(FP,0) <0 (2.6)
or
d(P,0) <0,6(P,0) >0, (2.7)

where E; = {0 € [—£,3%) : §(P;,0) =0} is a finite set, which has linear

T 2n) 2n
measure zZero.

Remark 2.1 ([13]) In Lemma 2.3, if 0 € (=2, ) \ (Eg U E7) is replaced

T 2n02n

by 6 € (££,3%) \ (Eg U E7), then we obtain the same result.
Lemma 2.4 ([2]) Suppose that k > 2 and By, By, ..., Bx_1 are entire func-
tions of finite order and let 0 = max{o (B;):j=0,....,k—1}. Then every
solution f of the equation

f® 4B f* Y4 4+ B f+Byf =0 (2.8)

satisfies oo (f) < 0.

Lemma 2.5 ([7]) Let f(z) be a transcendental meromorphic function, and
let o > 1 be a given constant. Then there exist a set Fg C (1,00) with finite
logarithmic measure and a constant B > 0 that depends only on « and i,
(0 < i< j<k), such that for all z satisfying |z| = r ¢ [0,1] U Es, we have

f9(2)
f9(2)
Lemma 2.6 ([8]) Let ¢ : [0,4+00) — R and v : [0, +00) — R be monotone
non-decreasing functions such that ¢ (r) < ¥ (r) for all r ¢ EqU|0, 1], where
Ey C (1,400) is a set of finite logarithmic measure. Let v > 1 be a given

constant. Then there exists an ry = ry (y) > 0 such that ¢ (r) < ¥ (yr) for
all v > ry.

<B {M (log® ) log T'(ar, f)}ﬂz. (2.9)
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3 Proof of Theorem 1.1

Assume that f (# 0) is a solution of equation (1.2).

First step: We prove that o (f) = 4+00. Suppose that o (f) = 0 < +oo.
Set max {0 (A;),0(B)),0 (D)} =0 <1 where (j =1,2), (I=1,...,k—1),
(m=0,....k —1). Then, for any given ¢ (0 < ¢ < 1 — () and for sufficiently
large r, we have

145 (2)] < exp {r*}, [By(2)] < exp {17}, D (2)] < exp {r#}.

(3.1)
By Lemma 2.1 (i), for the above e, there exists a set By C [-2,%) of
linear measure zero, such that if 6 € [—g, 37”) \ £}, then there is a constant

Ry = Ry (0) > 1, such that for all z satisfying argz = 6 and |z| = r > Ry,

we have
’f(j) (2)
f(2)

Let z = e, a1 = |a1| €, ay = |ag| €, 61,0, € [—-%,2F). We know that
3 (bz,0) =6 (car2,0) = ¢;6 (a12,0) (1L € 1h).

<Pl (G =1,..k). (3.2)

0

Case 1: arga; # 7, which is 6, # 7.

(i) Assume that 6; # 6. By Lemma 2.3, for any given ¢ (0 < & <
min{ IZ;I;IZH, 1—0, 2(11:&)})7 there is a ray arg z = 6 such that 6 € (=3, %) \
(Ey U Eg U E7) (where Eg and F; are defined as in Lemma 2.3, Fy U Fg U E;

is of the linear measure zero), and satisfying

d(a12,6) >0, 0 (azz,0) <0 ord(az,0) <0, (axz,6) > 0.
a) When 6 (a;z,60) > 0, 6 (azz,0) < 0, for sufficiently large r, we get by

Lemma 2.2
|A1e™?| = exp{(1 —¢) 6 (ar2,0)r}, (3.3)

|Age®| < exp{(1 —¢)d(azz,0)r} < 1. (3.4)
By (3.3) and (3.4), we have

A€ 4 Age®™| > [Are™] — | Ape®>?]

>exp{(l—¢)d(a1z,0)r} —1
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>(1—o(1))exp{(l —¢)d(arz,0)r}. (3.5)
By (1.2), we get

") (4
|Aje™® + Aye®*| < ’f (2) + (|Dy-1] + | Be-1 (2) €

f(z)

[0

@)

ot (DB ) |55

+ Do (2)] - (3.6)

For [ € I;, we have
’BZ (2) eb”’ <exp{(1+¢)gd(ar1z,0)r} <exp{(l+¢)cd(arz,0)r}. (3.7)

For [ € Iy, we have
’BZ (2) eblz} = |B; (2)| ’eblz} <exp {17} el eo? Lexp {rfte} (3.8)

because b; < 0 and cosf > 0. Substituting (3.1), (3.2), (3.5), (3.7) and (3.8)
into (3.6), we obtain

(I—o(1))exp{(1 —¢€)d(arz,0)r}
<7 k(o—1+¢) + (eXp {Tﬁ+e} + }Bk 1(2) br— 1ZD —1)(o—1+¢)
+.. 4 (exp {r’*} + | By (2) €]) r e +exp {rPT¢}
< Myr*o=19) exp {rP*}exp {(1+¢)cd (a12,0) r} (3.9)

where My > 0 is a some constant. From (3.9) and 0 < ¢ < we get

2(1+ )

1—c¢

(1—-0(1))exp { d(a1z,0) T} < MyrFe=1%9) exp {rfte}. (3.10)

By d(a12,0) > 0 and 4 ¢ < 1 we know that (3.10) is a contradiction.

b) When § (a12,0) < 0, 6 (azz,0) > 0, for sufficiently large r, we get by
Lemma 2.2
|Aje™?| < exp{(1l —¢)d(ar12,0)r} <1, (3.11)

|Age®?| > exp{(1 — &) 6 (azz,0)r}. (3.12)
By (3.11) and (3.12), we have

|Aje™* + Aze®*| = (1 — 0o (1)) exp {(1 — &) 0 (azz,0) 1} . (3.13)
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For [ € I;, we have
|Bi () e"*| <exp{(1+¢)ad(arz,0)r} < 1. (3.14)
Substituting (3.1), (3.2), (3.8), (3.13) and (3.14) into (3.6), we obtain
(I—o(1)exp{(1 —¢)d (azz,0)r} < Mor* " exp {rPT} . (3.15)

By d (azz,0) > 0 and 4 ¢ < 1 we know that (3.15) is a contradiction.

(ii) Assume that ¢, = 6,. By Lemma 2.3, for the above ¢, there is a ray
argz = 0 such that 6 € (=%,%) \ (E1UEs U E;) and 6 (a,2,0) > 0. Since

T 202
la1| < |az|, a1 # as and 6 = 0y, then |a;| < |ag|, thus d (agz,0) > (a12,0) >
0. For sufficiently large r, we have by Lemma 2.2

|Aje™?| < exp{(l+¢)d(arz0)r}, (3.16)
|A2e%*| > exp {(1 — £) 0 (agz,0) '} (3.17)
and (3.7), (3.8) hold. By (3.16) and (3.17), we get
|Are®® + Ape®™| > [Age™?| — | Aye?|
>exp{(1—2¢)d(azz,0)r} —exp{(1+¢)d(a12,0)r}
=exp{(l1+¢)d(arz,0)r}exp{ar} —1], (3.18)

where

a=(1—-¢)d(az,0) —(14+¢)d(a12,0).

Since 0 < ¢ < la2l=lal 4hon

laz|+la1|’

a=(1—c¢)laz|cos (b +6) — (1 +¢)|ay|cos (6, + 0)

= cos (01 +0) [(1 — ¢) |az| — (1 + &) [as]]
= cos (01 + 0) [laz| — [a1] — & (|az| + |a1])] > 0.
Then, by a > 0 and from (3.18), we get

|A1e™* + Age®®| > (1 — 0o (1)) exp{(1 +¢) 6 (ar12,0)r}exp{ar}. (3.19)
Substituting (3.1), (3.2), (3.7), (3.8) and (3.19) into (3.6), we obtain
(1 —o(1))exp{(l +¢)d(arz0)r}exp{ar}
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< MyrHo= ) exp {7} exp {(1 +€) ¢6 (a12,0) 1}, (3.20)
where M; > 0 is a some constant. By (3.20), we have
(1—o()exp{[(1+¢)(1—c)d(ar1z,0) + aJr} < Myr* o) exp {r7F} .

(3.21)
By 0 (a12,0) > 0, @ > 0 and S+ < 1 we know that (3.21) is a contradiction.

Case 2: a1 < 1%6, which is 6, = .
(i) Assume that 61 # 0,, then 0, # m. By Lemma 2.3, for the above ¢, there
is a ray arg z = 6 such that 6 € (—3,%) \ (Ey U Eg U E7) and § (asz,6) > 0.

202
Because cosf > 0, we have 6 (a12,6) = |ai|cos (61 +6) = —|as| cosf < 0.

For sufficiently large r, we obtain by Lemma 2.2

|Aje®?| < exp{(l —¢)d(ar12,0)r} <1, (3.22)

|Ase®*| = exp{(1 —¢)d (azz,0) 1} (3.23)

and (3.8), (3.14) hold. By (3.22) and (3.23), we obtain

|A16alz + A26a22| > |A26a2z| — |A16alz|

> exp{(1— )8 (azz,0) 1} — 1

>(1—o0(1))exp{(l —¢)d (azz,0)r}. (3.24)

Using the same reasoning as in Case 1(i), we can get a contradiction.

(ii) Assume that 6, = 6y, then 0; = 0, = m. By Lemma 2.3, for the above &,

there is a ray arg z = 0 such that 6 € (3,2)\ (E; U Eg U Ex), then cos 6 < 0,

d(a1z,0) = |ay| cos (01 + 6) = — |ay| cos @ > 0, 0 (azz,0) = |as| cos (62 + 0) =
— |ag| cos @ > 0. Since |a;| < |az|, a1 # ag and 6, = 05, then |a1| < |az], thus
d (agz,0) > 6 (ayz,0) > 0. For sufficiently large r, we get (3.7), (3.16), (3.17)
and (3.19) holds. For [ € I, we have

’BZ (2) eblz} = |B; (2)| ’eb’z’ < exp {rﬁﬁ} exp {b;r cos 0}

< exp {Tﬁ+5} exp {br cos 0} (3.25)

because b; < 0, b =min{b, : [ € I} and cosf < 0. Substituting (3.1), (3.2),
(3.7), (3.19) and (3.25) into (3.6), we obtain

(1 —o(1))exp{(1 +¢)d(arz0)r}exp{ar}
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< MyrFe= 1) exp {17+ } exp {(1 + ) ¢6 (a2, 0) v} exp {br cos 0},
where M, > 0 is a some constant. Thus
(1—o0(1))exp {yr} < Myr*o=149) exp {rfte}, (3.26)

where v = (14+¢)(1 —¢)d(a12,0) + a — beosf. Since a > 0, cosf < 0,
§ (a12,0) = — |a1| cos 0, a; < 7= and b < 0, then

y=—(14¢)(1—c)|ai|cosh —bcosh + «
=—[1+¢)(1—c)lay|+ b cosh + a
0]
1—c¢
=—[-(1+e)b+blcosh+a=a+bescosd > 0.

>—((1+¢)(1—¢) +b| cosf +

By f+¢ < 1and v > 0, we know that (3.26) is a contradiction. Concluding
the above proof, we obtain o (f) = +oc.

Second step: We prove that o5 (f) = 1. By
max {cr (Dl + Bleblz) (l=1,..,k—=1), 0 (Dg+ Are™* + Aze‘”z)} =1

and Lemma 2.4, we obtain o5 (f) < 1. By Lemma 2.5, we know that there
exists a set Fg C (1,+00) with finite logarithmic measure and a constant
B > 0, such that for all z satisfying |z| = r ¢ [0, 1] U Es, we get

'f(j’(Z)
f(2)
Case 1: arga, # 7.

(i) (A1 # 02) . In first step, we have proved that there is a ray arg z = 6 where
0 € (—%,%)\ (E1UEg U Ey), satisfying

272

<BITEHHYT (G=1,....k). (3.27)

d(ar1z,0) >0, 0 (azz,0) <0ord(a1z0) <0, 0 (azz,0) > 0.
a) When 9§ (a;z,0) > 0, § (agz,0) < 0, for sufficiently large r, we get (3.5)
holds. Substituting (3.1), (3.5), (3.7), (3.8) and (3.27) into (3.6), we obtain
for all z = re® satisfying |z| =r ¢ [0,1] U Es, 0 € (=3,%) \ (E1 U Eg U Ex7)
(I—o0(1))exp{(1—¢)0(a12,0)r}
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< BT@r, I + B [exp {7775} + | By (2) e2%]] [T'(2r, f)]F
+...+ B [exp {rﬁJ“S} + }Bl (2) eblzu [T(2r, f)]2 + exp {Tﬁ+€}
< Moexp {r"*} exp {(1 +¢) cd (ar2,0) r} [T'(2r, j‘")]kJrl (3.28)
where My > 0 is a some constant. From (3.28) and 0 < ¢ <

2(1+ y, we get

1—c¢

(I1—0(1))exp { 0 (a12,0) r} < My exp {rP*} [T(2r, DY (3.29)
Since 0 (a12,0) > 0, f + e < 1, then by using Lemma 2.6 and (3.29), we
obtain o9 (f) > 1, hence o9 (f) = 1.

b) When 6 (a;2,6) < 0, 6 (azz,6) > 0, for sufficiently large r, we get (3.13)
holds. Substituting (3.1), (3.8), (3.13), (3.14) and (3. 27) into (3.6), we obtain
for all z = re® satisfying |z| =r ¢ [0,1] U Es, 0 € (—3,%) \ (E1 U Eg U E7)

(1—o(1))exp{(1 — )6 (azz,0) r} < Myexp {r’*<} [T'(2r, O (3.30)

where My > 0 is a some constant. By 0 (agz,0) > 0, f+¢ < 1 and (3.30),
we have og (f) > 1, then oy (f) = 1.

(ii) (6, = 63) . In first step, we have proved that there is a ray arg z = 6 where
0 € (—%2,2) \ (E1U Eg U Ey), satisfying 6 (azz,6) > 6 (a12,6) > 0 and for
sufficiently large r, we get (3.19) holds. Substituting (3.1), (3.7), (3.8), (3.19)
and (3.27) into (3.6), we obtain for all z = re satisfying |z| = r ¢ [0, 1] U Ex,
0 (~3.3)\ (B U By U B

(1 —o(1))exp{(l +¢)d(arz,0)r}exp{ar}

< Myexp {r’*}exp {(1+¢)cd (a12,0) r} [T(2r, PP, (3.31)

where M; > 0 is a some constant. By (3.31), we have

(1—o(1)exp{[(1+¢) (1 —¢)6(ar2,0) + a]r} < Myexp {r°*<} [T(2r, DI
(3.32)

Since ¢ (a12,60) > 0, a > 0, f+ & < 1, then by using Lemma 2.6 and (3.32),

we obtain o3 (f) > 1, hence o5 (f) = 1.

Case 2: q; < ﬁ

(i) (61 # 0,) . In first step, we have proved that there is a ray arg z = 6 where

0 € (—%,%)\ (E1UEsU Ey), satistying 6 (as2,0) > 0 and 6 (a12,6) < 0 and

for sufficiently large r, we get (3.24) holds. Using the same reasoning as in

second step ( Case 1 (i)), we can get oo (f) = 1.
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(17) (61 = 05) In first step, we have proved that there is a ray argz = 0
where 6 € (3,27) \ (E; UEgU Ey), satisfying ¢ (asz,0) > 6 (ai2,0) > 0
and for sufficiently large r, we get (3.19) holds. Substituting (3.1), (3.7),
(3.19), (3.25) and (3.27) into (3.6), we obtain for all z = re? satisfying

2| =7 ¢ [0,1]UEs, 6 € (—%,Z) \ (E1U Es U E7)
(1—o0(1))exp{(1+¢)d(arz,0)r}exp{ar}

< Myexp {r’*} exp {(1+¢) cd (ar12,6) r} exp {br cos 0} [T'(2r, PP,

where M, > 0 is a some constant. Thus
(1= o (1)) exp{yr} < Myexp {1} [T(2r, /I, (333)

where v = (1+¢) (1 —¢)d(ar12,60) + a — bcosf. Since v > 0, B+ < 1,
then by using Lemma 2.6 and (3.33), we have oy (f) > 1, hence o5 (f) = 1.
Concluding the above proof, we obtain that every solution f # 0 of (1.2)
satisfies oo (f) = 1. The proof of Theorem 1.1 is complete.

4 Proofs of Corollary 1.1 and Corollary 1.2

Using the same reasoning as in the proof of Theorem 1.1, we can obtain
Corollary 1.1 and Corollary 1.2.

References

[1] I. Amemiya and M. Ozawa, Non-existence of finite order solutions of
w' + e *w' 4+ Q (2) w = 0, Hokkaido Math. J. 10 (1981), Special Issue, 1-17.
[2] Z. X. Chen and K. H. Shon, On the growth of solutions of a class of higher
order differential equations, Acta Math. Sci. Ser. B Engl. Ed. 24 (2004),
no. 1, 52-60.

[3] Z. X. Chen, The growth of solutions of "+ e *f + Q(z) f = 0 where
the order(Q) = 1, Sci. China Ser. A 45 (2002), no. 3, 290-300.

[4] M. Frei, Uber die Losungen linearer Differentialgleichungen mit ganzen
Funktionen als Koeffizienten, Comment. Math. Helv. 35 (1961), 201-222.
[5] M. Frei, Uber die Subnormalen Lésungen der Differentialgleichung w" +
e *w' + (Konst.)w = 0, Comment. Math. Helv. 36, 1961, 1-8.

EJQTDE, 2011 No. 93, p. 12



[6] G. G. Gundersen, On the question of whether f" + e *f + B(z)f =0
can admit a solution f # 0 of finite order, Proc. Roy. Soc. Edinburgh Sect.
A 102 (1986), no. 1-2, 9-17.

[7] G. G. Gundersen, Estimates for the logarithmic derivative of a meromor-
phic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988),
no. 1, 88-104.

[8] G. G. Gundersen, Finite order solutions of second order linear differential
equations, Trans. Amer. Math. Soc. 305 (1988), no. 1, 415-429.

9] W. K. Hayman, Meromorphic functions, Oxford Mathematical Mono-
graphs Clarendon Press, Oxford 1964.

[10] K. H. Kwon, Nonezistence of finite order solutions of certain second order
linear differential equations, Kodai Math. J. 19 (1996), no. 3, 378-387.

[11] J. K. Langley, On complex oscillation and a problem of Ozawa, Kodai
Math. J. 9 (1986), no. 3, 430-439.

[12] M. Ozawa, On a solution of w" 4+ e *w + (az + b) w = 0, Kodai Math.
J. 3 (1980), no. 2, 295-3009.

[13] F. Peng and Z. X. Chen, On the growth of solutions of some second-order
linear differential equations, J. Inequal. Appl. 2011, Art. ID 635604, 1-9.
[14] C. C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions,
Mathematics and its Applications, 557. Kluwer Academic Publishers Group,
Dordrecht, 2003.

(Received August 15, 2011)

EJQTDE, 2011 No. 93, p. 13



