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Abstract. In this paper, we investigate the order and the hyper-order of
solutions of the linear differential equation

f (k) +
(

Dk−1 +Bk−1e
bk−1z

)

f (k−1) + ...+
(

D1 +B1e
b1z

)

f ′

+ (D0 + A1e
a1z + A2e

a2z) f = 0,

where Aj (z) (6≡ 0) (j = 1, 2), Bl (z) ( 6≡ 0) (l = 1, ..., k − 1), Dm (m =
0, ..., k − 1) are entire functions with max{σ (Aj) , σ (Bl) , σ (Dm)} < 1, a1,
a2, bl (l = 1, ..., k − 1) are complex numbers. Under some conditions, we
prove that every solution f (z) 6≡ 0 of the above equation is of infinite order
and with hyper-order 1.
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1 Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fun-
damental results and the standard notations of the Nevanlinna’s value dis-
tribution theory (see [9], [14]). Let σ (f) denote the order of growth of an
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entire function f and the hyper-order σ2 (f) of f is defined by (see [10] , [14])

σ2 (f) = lim
r→+∞

sup
log log T (r, f)

log r
= lim

r→+∞
sup

log log logM (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function of f and M (r, f) =
max|z|=r |f (z)|.

For the second order linear differential equation

f
′′

+ e−zf
′

+B (z) f = 0, (1.1)

where B (z) is an entire function, it is well-known that each solution f of
the equation (1.1) is an entire function, and that if f1, f2 are two linearly
independent solutions of (1.1) , then by [4] , there is at least one of f1, f2 of
infinite order. Hence, ”most” solutions of (1.1) will have infinite order. But
the equation (1.1) with B(z) = −(1 + e−z) possesses a solution f (z) = ez of
finite order.

A natural question arises: What conditions on B(z) will guarantee that
every solution f 6≡ 0 of (1.1) has infinite order? Many authors, Frei [5], Ozawa
[12], Amemiya-Ozawa [1] and Gundersen [6], Langley [11] have studied this
problem. They proved that when B(z) is a nonconstant polynomial or B(z)
is a transcendental entire function with order ρ(B) 6= 1, then every solution
f 6≡ 0 of (1.1) has infinite order. In [3] , Chen has considered equation (1.1)
and obtained different results concerning the growth of its solutions when
ρ(B) = 1.

Recently in [13], Peng and Chen have investigated the order and the
hyper-order of solutions of some second order linear differential equations
and have proved the following result.

Theorem A ([13]) Let Aj (z) (6≡ 0) (j = 1, 2) be entire functions with σ (Aj) <
1, a1, a2 be complex numbers such that a1a2 6= 0, a1 6= a2 (suppose that
|a1| 6 |a2|). If arg a1 6= π or a1 < −1, then every solution f 6≡ 0 of the
equation

f ′′ + e−zf ′ + (A1e
a1z + A2e

a2z) f = 0

has infinite order and σ2 (f) = 1.
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In this paper, we continue the research in this type of problems, the main
purpose of this paper is to extend and improve the results of Theorem A
to some higher order linear differential equations. In fact we will prove the
following results.

Theorem 1.1 Let Aj (z) ( 6≡ 0) (j = 1, 2), Bl (z) ( 6≡ 0) (l = 1, ..., k − 1), Dm

(m = 0, ..., k − 1) be entire functions with max {σ (Aj) , σ (Bl) , σ (Dm)} < 1,
bl (l = 1, ..., k − 1) be complex constants such that (i) arg bl = arg a1 and
bl = cla1 (0 < cl < 1) (l ∈ I1) and (ii) bl is a real constant such that bl 6 0
(l ∈ I2), where I1 6= ∅, I2 6= ∅, I1 ∩ I2 = ∅, I1 ∪ I2 = {1, 2, ..., k − 1},
and a1, a2 are complex numbers such that a1a2 6= 0, a1 6= a2 (suppose that
|a1| 6 |a2|). If arg a1 6= π or a1 is a real number such that a1 <

b
1−c

, where
c = max {cl : l ∈ I1} and b = min {bl : l ∈ I2}, then every solution f 6≡ 0 of
the equation

f (k) +
(

Dk−1 +Bk−1e
bk−1z

)

f (k−1) + ...+
(

D1 +B1e
b1z

)

f ′

+ (D0 + A1e
a1z + A2e

a2z) f = 0 (1.2)

satisfies σ (f) = +∞ and σ2 (f) = 1.

Corollary 1.1 Let Aj (z) ( 6≡ 0) (j = 1, 2), Bl (z) ( 6≡ 0) (l = 1, ..., k − 1), Dm

(m = 0, ..., k − 1) be entire functions with max {σ (Aj) , σ (Bl) , σ (Dm)} < 1,
bl (l = 1, ..., k − 1) be complex constants such that arg bl = arg a1 and bl =
cla1 (0 < cl < 1) (l = 1, ..., k − 1), and a1, a2 be complex numbers such that
a1a2 6= 0, a1 6= a2 (suppose that |a1| 6 |a2|). If arg a1 6= π or a1 is a real
number such that a1 < 0, then every solution f 6≡ 0 of equation (1.2) satisfies
σ (f) = +∞ and σ2 (f) = 1.

Corollary 1.2 Let Aj (z) ( 6≡ 0) (j = 1, 2), Bl (z) ( 6≡ 0) (l = 1, ..., k − 1), Dm

(m = 0, ..., k − 1) be entire functions with max {σ (Aj) , σ (Bl) , σ (Dm)} < 1,
bl (l = 1, ..., k − 1) be real constants such that bl 6 0, and a1, a2 be complex
numbers such that a1a2 6= 0, a1 6= a2 (suppose that |a1| 6 |a2|). If arg a1 6= π
or a1 is a real number such that a1 < b, where b = min {bl : l = 1, ..., k − 1},
then every solution f 6≡ 0 of equation (1.2) satisfies σ (f) = +∞ and
σ2 (f) = 1.
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2 Preliminary lemmas

To prove our theorem, we need the following lemmas.

Lemma 2.1 ([7]) Let f be a transcendental meromorphic function with
σ (f) = σ < +∞, H = {(k1, j1) , (k2, j2) , ..., (kq, jq)} be a finite set of distinct
pairs of integers satisfying ki > ji > 0 (i = 1, ..., q) and let ε > 0 be a given
constant. Then,
(i) there exists a set E1 ⊂

[

−π
2
, 3π

2

)

with linear measure zero, such that, if
ψ ∈

[

−π
2
, 3π

2

)

\ E1, then there is a constant R0 = R0 (ψ) > 1, such that for
all z satisfying arg z = ψ and |z| > R0 and for all (k, j) ∈ H, we have

∣

∣

∣

∣

f (k) (z)

f (j) (z)

∣

∣

∣

∣

6 |z|(k−j)(σ−1+ε) , (2.1)

(ii) there exists a set E2 ⊂ (1,+∞) with finite logarithmic measure, such
that for all z satisfying |z| /∈ E2 ∪ [0, 1] and for all (k, j) ∈ H, we have

∣

∣

∣

∣

f (k) (z)

f (j) (z)

∣

∣

∣

∣

6 |z|(k−j)(σ−1+ε) , (2.2)

(iii) there exists a set E3 ⊂ (0,∞) with finite linear measure, such that for
all z satisfying |z| /∈ E3 and for all (k, j) ∈ H, we have

∣

∣

∣

∣

f (k) (z)

f (j) (z)

∣

∣

∣

∣

6 |z|(k−j)(σ+ε) . (2.3)

Lemma 2.2 ([3]) Suppose that P (z) = (α + iβ) zn + ... (α, β are real num-
bers, |α|+ |β| 6= 0) is a polynomial with degree n > 1, that A (z) ( 6≡ 0) is an
entire function with σ (A) < n. Set g (z) = A (z) eP (z), z = reiθ, δ (P, θ) =
α cosnθ−β sinnθ. Then for any given ε > 0, there is a set E4 ⊂ [0, 2π) that
has linear measure zero, such that for any θ ∈ [0, 2π) � (E4 ∪E5), there is
R > 0, such that for |z| = r > R, we have
(i) if δ (P, θ) > 0, then

exp {(1 − ε) δ (P, θ) rn} 6
∣

∣g
(

reiθ
)
∣

∣ 6 exp {(1 + ε) δ (P, θ) rn} ; (2.4)

(ii) if δ (P, θ) < 0, then

exp {(1 + ε) δ (P, θ) rn} 6
∣

∣g
(

reiθ
)
∣

∣ 6 exp {(1 − ε) δ (P, θ) rn} , (2.5)
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where E5 = {θ ∈ [0, 2π) : δ (P, θ) = 0} is a finite set.

Lemma 2.3 ([13]) Suppose that n > 1 is a positive entire number. Let
Pj (z) = ajnz

n + ... (j = 1, 2) be nonconstant polynomials, where ajq (q =
1, ..., n) are complex numbers and a1na2n 6= 0. Set z = reiθ, ajn = |ajn| e

iθj ,
θj ∈

[

−π
2
, 3π

2

)

, δ (Pj , θ) = |ajn| cos (θj + nθ), then there is a set E6 ⊂
[

− π
2n
, 3π

2n

)

that has linear measure zero. If θ1 6= θ2, then there exists a ray
arg z = θ, θ ∈

(

− π
2n
, π

2n

)

\ (E6 ∪ E7), such that

δ (P1, θ) > 0 , δ (P2, θ) < 0 (2.6)

or
δ (P1, θ) < 0 , δ (P2, θ) > 0, (2.7)

where E7 =
{

θ ∈
[

− π
2n
, 3π

2n

)

: δ (Pj, θ) = 0
}

is a finite set, which has linear
measure zero.

Remark 2.1 ([13]) In Lemma 2.3, if θ ∈
(

− π
2n
, π

2n

)

\ (E6 ∪ E7) is replaced
by θ ∈

(

π
2n
, 3π

2n

)

\ (E6 ∪ E7), then we obtain the same result.

Lemma 2.4 ([2]) Suppose that k > 2 and B0, B1, ..., Bk−1 are entire func-
tions of finite order and let σ = max {σ (Bj) : j = 0, ..., k − 1}. Then every
solution f of the equation

f (k) +Bk−1f
(k−1) + ...+B1f

′ +B0f = 0 (2.8)

satisfies σ2 (f) 6 σ.

Lemma 2.5 ([7]) Let f(z) be a transcendental meromorphic function, and
let α > 1 be a given constant. Then there exist a set E8 ⊂ (1,∞) with finite
logarithmic measure and a constant B > 0 that depends only on α and i, j
(0 6 i < j 6 k), such that for all z satisfying |z| = r /∈ [0, 1] ∪E8, we have

∣

∣

∣

∣

f (j)(z)

f (i)(z)

∣

∣

∣

∣

6 B

{

T (αr, f)

r
(logα r) log T (αr, f)

}j−i

. (2.9)

Lemma 2.6 ([8]) Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone
non-decreasing functions such that ϕ (r) 6 ψ (r) for all r /∈ E9 ∪ [0, 1], where
E9 ⊂ (1,+∞) is a set of finite logarithmic measure. Let γ > 1 be a given
constant. Then there exists an r1 = r1 (γ) > 0 such that ϕ (r) 6 ψ (γr) for
all r > r1.
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3 Proof of Theorem 1.1

Assume that f ( 6≡ 0) is a solution of equation (1.2).

First step: We prove that σ (f) = +∞. Suppose that σ (f) = σ < +∞.
Set max {σ (Aj) , σ (Bl) , σ (Dm)} = β < 1 where (j = 1, 2), (l = 1, ..., k− 1),
(m = 0, ..., k − 1). Then, for any given ε (0 < ε < 1 − β) and for sufficiently
large r, we have

|Aj (z)| 6 exp
{

rβ+ε
}

, |Bl (z)| 6 exp
{

rβ+ε
}

, |Dm (z)| 6 exp
{

rβ+ε
}

.
(3.1)

By Lemma 2.1 (i), for the above ε, there exists a set E1 ⊂
[

−π
2
, 3π

2

)

of
linear measure zero, such that if θ ∈

[

−π
2
, 3π

2

)

\ E1, then there is a constant
R0 = R0 (θ) > 1, such that for all z satisfying arg z = θ and |z| = r > R0,
we have

∣

∣

∣

∣

f (j) (z)

f (z)

∣

∣

∣

∣

6 rj(σ−1+ε) (j = 1, ..., k) . (3.2)

Let z = reiθ, a1 = |a1| e
iθ1 , a2 = |a2| e

iθ2, θ1, θ2 ∈
[

−π
2
, 3π

2

)

. We know that
δ (blz, θ) = δ (cla1z, θ) = clδ (a1z, θ) (l ∈ I1).

Case 1: arg a1 6= π, which is θ1 6= π.
(i) Assume that θ1 6= θ2. By Lemma 2.3, for any given ε (0 < ε <

min{ |a2|−|a1|
|a2|+|a1|

, 1 − β, 1−c
2(1+c)

}), there is a ray arg z = θ such that θ ∈
(

−π
2
, π

2

)

\

(E1 ∪E6 ∪E7) (where E6 and E7 are defined as in Lemma 2.3, E1 ∪E6 ∪E7

is of the linear measure zero), and satisfying

δ (a1z, θ) > 0, δ (a2z, θ) < 0 or δ (a1z, θ) < 0, δ (a2z, θ) > 0.

a) When δ (a1z, θ) > 0, δ (a2z, θ) < 0, for sufficiently large r, we get by
Lemma 2.2

|A1e
a1z| > exp {(1 − ε) δ (a1z, θ) r} , (3.3)

|A2e
a2z| 6 exp {(1 − ε) δ (a2z, θ) r} < 1. (3.4)

By (3.3) and (3.4), we have

|A1e
a1z + A2e

a2z| > |A1e
a1z| − |A2e

a2z|

> exp {(1 − ε) δ (a1z, θ) r} − 1
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> (1 − o (1)) exp {(1 − ε) δ (a1z, θ) r} . (3.5)

By (1.2), we get

|A1e
a1z + A2e

a2z| 6

∣

∣

∣

∣

f (k) (z)

f (z)

∣

∣

∣

∣

+
(

|Dk−1| +
∣

∣Bk−1 (z) ebk−1z
∣

∣

)

∣

∣

∣

∣

f (k−1) (z)

f (z)

∣

∣

∣

∣

+...+
(

|D1| +
∣

∣B1 (z) eb1z
∣

∣

)

∣

∣

∣

∣

f ′ (z)

f (z)

∣

∣

∣

∣

+ |D0 (z)| . (3.6)

For l ∈ I1, we have
∣

∣Bl (z) e
blz

∣

∣ 6 exp {(1 + ε) clδ (a1z, θ) r} 6 exp {(1 + ε) cδ (a1z, θ) r} . (3.7)

For l ∈ I2, we have
∣

∣Bl (z) e
blz

∣

∣ = |Bl (z)|
∣

∣eblz
∣

∣ 6 exp
{

rβ+ε
}

eblr cos θ
6 exp

{

rβ+ε
}

(3.8)

because bl 6 0 and cos θ > 0. Substituting (3.1) , (3.2) , (3.5), (3.7) and (3.8)
into (3.6), we obtain

(1 − o (1)) exp {(1 − ε) δ (a1z, θ) r}

6 rk(σ−1+ε) +
(

exp
{

rβ+ε
}

+
∣

∣Bk−1 (z) ebk−1z
∣

∣

)

r(k−1)(σ−1+ε)

+...+
(

exp
{

rβ+ε
}

+
∣

∣B1 (z) eb1z
∣

∣

)

rσ−1+ε + exp
{

rβ+ε
}

6 M0r
k(σ−1+ε) exp

{

rβ+ε
}

exp {(1 + ε) cδ (a1z, θ) r} , (3.9)

where M0 > 0 is a some constant. From (3.9) and 0 < ε < 1−c
2(1+c)

, we get

(1 − o (1)) exp

{

1 − c

2
δ (a1z, θ) r

}

6 M0r
k(σ−1+ε) exp

{

rβ+ε
}

. (3.10)

By δ (a1z, θ) > 0 and β + ε < 1 we know that (3.10) is a contradiction.

b) When δ (a1z, θ) < 0, δ (a2z, θ) > 0, for sufficiently large r, we get by
Lemma 2.2

|A1e
a1z| 6 exp {(1 − ε) δ (a1z, θ) r} < 1, (3.11)

|A2e
a2z| > exp {(1 − ε) δ (a2z, θ) r} . (3.12)

By (3.11) and (3.12), we have

|A1e
a1z + A2e

a2z| > (1 − o (1)) exp {(1 − ε) δ (a2z, θ) r} . (3.13)
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For l ∈ I1, we have
∣

∣Bl (z) e
blz

∣

∣ 6 exp {(1 + ε) clδ (a1z, θ) r} < 1. (3.14)

Substituting (3.1) , (3.2) , (3.8) , (3.13) and (3.14) into (3.6), we obtain

(1 − o (1)) exp {(1 − ε) δ (a2z, θ) r} 6 M0r
k(σ−1+ε) exp

{

rβ+ε
}

. (3.15)

By δ (a2z, θ) > 0 and β + ε < 1 we know that (3.15) is a contradiction.

(ii) Assume that θ1 = θ2. By Lemma 2.3, for the above ε, there is a ray
arg z = θ such that θ ∈

(

−π
2
, π

2

)

\ (E1 ∪E6 ∪ E7) and δ (a1z, θ) > 0. Since
|a1| 6 |a2|, a1 6= a2 and θ1 = θ2, then |a1| < |a2|, thus δ (a2z, θ) > δ (a1z, θ) >
0. For sufficiently large r, we have by Lemma 2.2

|A1e
a1z| 6 exp {(1 + ε) δ (a1z, θ) r} , (3.16)

|A2e
a2z| > exp {(1 − ε) δ (a2z, θ) r} (3.17)

and (3.7) , (3.8) hold. By (3.16) and (3.17), we get

|A1e
a1z + A2e

a2z| > |A2e
a2z| − |A1e

a1z|

> exp {(1 − ε) δ (a2z, θ) r} − exp {(1 + ε) δ (a1z, θ) r}

= exp {(1 + ε) δ (a1z, θ) r} [exp {αr} − 1] , (3.18)

where
α = (1 − ε) δ (a2z, θ) − (1 + ε) δ (a1z, θ) .

Since 0 < ε < |a2|−|a1|
|a2|+|a1|

, then

α = (1 − ε) |a2| cos (θ2 + θ) − (1 + ε) |a1| cos (θ1 + θ)

= cos (θ1 + θ) [(1 − ε) |a2| − (1 + ε) |a1|]

= cos (θ1 + θ) [|a2| − |a1| − ε (|a2| + |a1|)] > 0.

Then, by α > 0 and from (3.18), we get

|A1e
a1z + A2e

a2z| > (1 − o (1)) exp {(1 + ε) δ (a1z, θ) r} exp {αr} . (3.19)

Substituting (3.1), (3.2), (3.7), (3.8) and (3.19) into (3.6), we obtain

(1 − o (1)) exp {(1 + ε) δ (a1z, θ) r} exp {αr}
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6 M1r
k(σ−1+ε) exp

{

rβ+ε
}

exp {(1 + ε) cδ (a1z, θ) r} , (3.20)

where M1 > 0 is a some constant. By (3.20), we have

(1 − o (1)) exp {[(1 + ε) (1 − c) δ (a1z, θ) + α]r} 6 M1r
k(σ−1+ε) exp

{

rβ+ε
}

.
(3.21)

By δ (a1z, θ) > 0, α > 0 and β+ε < 1 we know that (3.21) is a contradiction.

Case 2: a1 <
b

1−c
, which is θ1 = π.

(i) Assume that θ1 6= θ2, then θ2 6= π. By Lemma 2.3, for the above ε, there
is a ray arg z = θ such that θ ∈

(

−π
2
, π

2

)

\ (E1 ∪E6 ∪ E7) and δ (a2z, θ) > 0.
Because cos θ > 0, we have δ (a1z, θ) = |a1| cos (θ1 + θ) = − |a1| cos θ < 0.
For sufficiently large r, we obtain by Lemma 2.2

|A1e
a1z| 6 exp {(1 − ε) δ (a1z, θ) r} < 1, (3.22)

|A2e
a2z| > exp {(1 − ε) δ (a2z, θ) r} (3.23)

and (3.8), (3.14) hold. By (3.22) and (3.23), we obtain

|A1e
a1z + A2e

a2z| > |A2e
a2z| − |A1e

a1z|

> exp {(1 − ε) δ (a2z, θ) r} − 1

> (1 − o (1)) exp {(1 − ε) δ (a2z, θ) r} . (3.24)

Using the same reasoning as in Case 1(i), we can get a contradiction.

(ii) Assume that θ1 = θ2, then θ1 = θ2 = π. By Lemma 2.3, for the above ε,
there is a ray arg z = θ such that θ ∈

(

π
2
, 3π

2

)

\(E1 ∪ E6 ∪E7), then cos θ < 0,
δ (a1z, θ) = |a1| cos (θ1 + θ) = − |a1| cos θ > 0, δ (a2z, θ) = |a2| cos (θ2 + θ) =
− |a2| cos θ > 0. Since |a1| 6 |a2|, a1 6= a2 and θ1 = θ2, then |a1| < |a2|, thus
δ (a2z, θ) > δ (a1z, θ) > 0. For sufficiently large r, we get (3.7), (3.16), (3.17)
and (3.19) holds. For l ∈ I2, we have

∣

∣Bl (z) e
blz

∣

∣ = |Bl (z)|
∣

∣eblz
∣

∣ 6 exp
{

rβ+ε
}

exp {blr cos θ}

6 exp
{

rβ+ε
}

exp {br cos θ} (3.25)

because bl 6 0, b = min {bl : l ∈ I2} and cos θ < 0. Substituting (3.1), (3.2),
(3.7), (3.19) and (3.25) into (3.6), we obtain

(1 − o (1)) exp {(1 + ε) δ (a1z, θ) r} exp {αr}
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6 M2r
k(σ−1+ε) exp

{

rβ+ε
}

exp {(1 + ε) cδ (a1z, θ) r} exp {br cos θ} ,

where M2 > 0 is a some constant. Thus

(1 − o (1)) exp {γr} 6 M2r
k(σ−1+ε) exp

{

rβ+ε
}

, (3.26)

where γ = (1 + ε) (1 − c) δ (a1z, θ) + α − b cos θ. Since α > 0, cos θ < 0,
δ (a1z, θ) = − |a1| cos θ, a1 <

b
1−c

and b 6 0, then

γ = − (1 + ε) (1 − c) |a1| cos θ − b cos θ + α

= − [(1 + ε) (1 − c) |a1| + b] cos θ + α

> −

[

(1 + ε) (1 − c)
|b|

1 − c
+ b

]

cos θ + α

= − [− (1 + ε) b+ b] cos θ + α = α + bε cos θ > 0.

By β + ε < 1 and γ > 0, we know that (3.26) is a contradiction. Concluding
the above proof, we obtain σ (f) = +∞.

Second step: We prove that σ2 (f) = 1. By

max
{

σ
(

Dl +Ble
blz

)

(l = 1, ..., k − 1) , σ (D0 + A1e
a1z + A2e

a2z)
}

= 1

and Lemma 2.4, we obtain σ2 (f) 6 1. By Lemma 2.5, we know that there
exists a set E8 ⊂ (1,+∞) with finite logarithmic measure and a constant
B > 0, such that for all z satisfying |z| = r /∈ [0, 1] ∪E8, we get

∣

∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣

∣

6 B [T (2r, f)]j+1 (j = 1, ..., k) . (3.27)

Case 1: arg a1 6= π.
(i) (θ1 6= θ2) . In first step, we have proved that there is a ray arg z = θ where
θ ∈

(

−π
2
, π

2

)

\ (E1 ∪E6 ∪ E7), satisfying

δ (a1z, θ) > 0, δ (a2z, θ) < 0 or δ (a1z, θ) < 0, δ (a2z, θ) > 0.

a) When δ (a1z, θ) > 0, δ (a2z, θ) < 0, for sufficiently large r, we get (3.5)
holds. Substituting (3.1) , (3.5) , (3.7) , (3.8) and (3.27) into (3.6), we obtain
for all z = reiθ satisfying |z| = r /∈ [0, 1] ∪E8, θ ∈

(

−π
2
, π

2

)

\ (E1 ∪ E6 ∪E7)

(1 − o (1)) exp {(1 − ε) δ (a1z, θ) r}
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6 B [T (2r, f)]k+1 +B
[

exp
{

rβ+ε
}

+
∣

∣Bk−1 (z) ebk−1z
∣

∣

]

[T (2r, f)]k

+... +B
[

exp
{

rβ+ε
}

+
∣

∣B1 (z) eb1z
∣

∣

]

[T (2r, f)]2 + exp
{

rβ+ε
}

6 M0 exp
{

rβ+ε
}

exp {(1 + ε) cδ (a1z, θ) r} [T (2r, f)]k+1 , (3.28)

where M0 > 0 is a some constant. From (3.28) and 0 < ε < 1−c
2(1+c)

, we get

(1 − o (1)) exp

{

1 − c

2
δ (a1z, θ) r

}

6 M0 exp
{

rβ+ε
}

[T (2r, f)]k+1 . (3.29)

Since δ (a1z, θ) > 0, β + ε < 1, then by using Lemma 2.6 and (3.29), we
obtain σ2 (f) > 1, hence σ2 (f) = 1.
b) When δ (a1z, θ) < 0, δ (a2z, θ) > 0, for sufficiently large r, we get (3.13)
holds. Substituting (3.1), (3.8) , (3.13), (3.14) and (3.27) into (3.6), we obtain
for all z = reiθ satisfying |z| = r /∈ [0, 1] ∪E8, θ ∈

(

−π
2
, π

2

)

\ (E1 ∪ E6 ∪E7)

(1 − o (1)) exp {(1 − ε) δ (a2z, θ) r} 6 M0 exp
{

rβ+ε
}

[T (2r, f)]k+1 , (3.30)

where M0 > 0 is a some constant. By δ (a2z, θ) > 0, β + ε < 1 and (3.30),
we have σ2 (f) > 1, then σ2 (f) = 1.
(ii) (θ1 = θ2) . In first step, we have proved that there is a ray arg z = θ where
θ ∈

(

−π
2
, π

2

)

\ (E1 ∪E6 ∪ E7), satisfying δ (a2z, θ) > δ (a1z, θ) > 0 and for
sufficiently large r, we get (3.19) holds. Substituting (3.1), (3.7) , (3.8), (3.19)
and (3.27) into (3.6), we obtain for all z = reiθ satisfying |z| = r /∈ [0, 1]∪E8,
θ ∈

(

−π
2
, π

2

)

\ (E1 ∪E6 ∪ E7)

(1 − o (1)) exp {(1 + ε) δ (a1z, θ) r} exp {αr}

6 M1 exp
{

rβ+ε
}

exp {(1 + ε) cδ (a1z, θ) r} [T (2r, f)]k+1 , (3.31)

where M1 > 0 is a some constant. By (3.31), we have

(1 − o (1)) exp {[(1 + ε) (1 − c) δ (a1z, θ) + α] r} 6 M1 exp
{

rβ+ε
}

[T (2r, f)]k+1 .
(3.32)

Since δ (a1z, θ) > 0, α > 0, β + ε < 1, then by using Lemma 2.6 and (3.32),
we obtain σ2 (f) > 1, hence σ2 (f) = 1.
Case 2: a1 <

b
1−c

.
(i) (θ1 6= θ2) . In first step, we have proved that there is a ray arg z = θ where
θ ∈

(

−π
2
, π

2

)

\ (E1 ∪E6 ∪ E7), satisfying δ (a2z, θ) > 0 and δ (a1z, θ) < 0 and
for sufficiently large r, we get (3.24) holds. Using the same reasoning as in
second step ( Case 1 (i)), we can get σ2 (f) = 1.
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(ii) (θ1 = θ2) In first step, we have proved that there is a ray arg z = θ
where θ ∈

(

π
2
, 3π

2

)

\ (E1 ∪ E6 ∪ E7), satisfying δ (a2z, θ) > δ (a1z, θ) > 0
and for sufficiently large r, we get (3.19) holds. Substituting (3.1), (3.7),
(3.19), (3.25) and (3.27) into (3.6), we obtain for all z = reiθ satisfying
|z| = r /∈ [0, 1] ∪ E8, θ ∈

(

−π
2
, π

2

)

\ (E1 ∪E6 ∪ E7)

(1 − o (1)) exp {(1 + ε) δ (a1z, θ) r} exp {αr}

6 M2 exp
{

rβ+ε
}

exp {(1 + ε) cδ (a1z, θ) r} exp {br cos θ} [T (2r, f)]k+1 ,

where M2 > 0 is a some constant. Thus

(1 − o (1)) exp {γr} 6 M2 exp
{

rβ+ε
}

[T (2r, f)]k+1 , (3.33)

where γ = (1 + ε) (1 − c) δ (a1z, θ) + α − b cos θ. Since γ > 0, β + ε < 1,
then by using Lemma 2.6 and (3.33), we have σ2 (f) > 1, hence σ2 (f) = 1.
Concluding the above proof, we obtain that every solution f 6≡ 0 of (1.2)
satisfies σ2 (f) = 1. The proof of Theorem 1.1 is complete.

4 Proofs of Corollary 1.1 and Corollary 1.2

Using the same reasoning as in the proof of Theorem 1.1, we can obtain
Corollary 1.1 and Corollary 1.2.
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